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Topics

e Control and sampling system implementation

— Transfer function

— Block diagrams,

— Single input - single output systems
e Laplace transform approach,

— Multi-input multi-output systems,
e space-state equation approach.

— MATLAB simulations of transient response



Solution of differential equations using Laplace transforms

A simple example differential
equation with initial conditions

Laplace transform

Then the real differential
theorem gives:

Substitute into the differential

eqn. then include initial
conditions.

Solve algebraically for X(s).

Transform back to get x(t).

¥+3%x+2x=0;, x(0)=a; x(0)=b

L

] =sX(s) - x(0); L]x]=5"X(s)-sx(0)-x(0)

:SZX(S) —sx(0) - x(O)] + 3[SX(S) - x(O)] +2X(s)=0

= [szX(s) - sa - b] + +3[SX(S) - a] +2X(s)=0

(52 + 3s+2)X(s) =as+b+3a

X(s) = = = — +

as+b+3a as+b+3a (a+b) (2a+b)
(S+1)

(sz+3s+2)_(s+2)(s+1) (s+2)

(After Ogata)



The transfer function of a system

R(s),R(?), C(s),C(2),

ete. etc.

*System is said to be linear if the principle of
superposition applies.

*Output for two inputs is not a superposition
of the individual outputs for two inputs.



Transfer functions

 The transfer function for a linear and time invariant differential
equation system is defined as:

G(s)= L [output = response function |

Zero initial conditions

L[input = driving function]



Transfer functions (cont)

Assume a linear time invariant
differential equation describes
the system.

Using the Laplace transform
concept we can represent the
differential equation
description of the dynamics by
an algebraic description in s.

If the highest power of sisn
we say the system is of nth-
order

(m) — (m-1)
aO y+a1 y +.”+am—2j}+am—l.)>+amy=

(n)  (n-1)
by y+b y +--+b _,y+b v+by, nz=m

O]
=G (S ) = Y(S )

X(s)

n n-1 2
bys" +bs"" +---+b _,s"+b _s+b,
1

m m-— 2
a,s” +as +---+a ,$ +a,  S+a,



Properties of the transfer function

G(s) is a mathematical model of the system that relates the output
variable to the input variable

G(s) is a property of the system and is not influenced by the driving or
output function.

G(s) does not say anything (directly!) about the physical structure of the
system

If G(s) is known then the behavior for different kinds of driving functions
can be determined.

G(s) may be established experimentally. Once known it provides a
complete description of the dynamics of the system



BLOCK DIAGRAMS



Block diagram elements

Transfer function
G(s)

Block diagram element

eDoes not load other
elements

eSignal flow denoted
by arrows

e|nput and output
need not have same
dimensions and units

Summing point

*+/- signs denote
adition subtraction

eQuantites added must
have same units and
same dimensions

Node point

eBranch point where
signal is sent ot other
blocks/summing points

eQuanttites on arms of
node have same units
and dimensions



Closed loop block diagram

E(s)

R(s C(s)
) G(s) >
B(s)
H(s)
The open-loop transfer function: Bls
describes ratio of B(s) to error E8 = G(S)H(S)
actuating signal E(s): S
The feedforward transfer function is C(S)
the ratio of output C(s) to the error —\ = G(S)
actuating signal E(s): E(S)
The closed loop transfer function is C(S ) _ G(S )

ratio of output to input signal: R(S) 1+ G(S )H(S)



Closed-loop transfer function

E(s)

C(s)

R Gl(s)
B(s)

J Ris) | Cls)_ Gls)
T R(s) 1+G(S)H(S)

H(s)

Cls)=Gl)EG)  E(s)=Cl)G(s)
E(s)=R(s)- B(s)=R(s)- H(s )(s)

/E(S)\ 4
BN %‘Wj'

=) oy

G(s)R(s) G(S)H(S)C(s)

Cls) — C(s)
G(S%R)(S) 1+ G(S)H(S)
C(S) G(S)

R(s)_ 1+ G(S)H(S)

C(s)



Closed-loops and disturbance

N(s)
E(s)
R(s) C(s)
G1(5) GZ(S) —@—
B(s)

H(s)

CR (S) Gl (S X;z (S) Transfer function for signal

R(s)  1+G ()G, () (s)
Cyls)_ Gyls)

N(S) 1+ G, (S X;z (S)H(S) Transfer function for disturbance
CN (S) G2 (S)

Cls)= CN(S)+ Crls)= R() = 1+G1(S)G2(S)H(s)[G1(S)R(S)+ N(S)]




N(s)

(s) - C(s)
R
S Gl(S) GZ(S) —@—
B(s)
H(s) )
Case 1: large
open loop ‘G (S )H(S >> 1 ‘Gl (sk?z (S)H(S) >> 1
gain C
e
Case 2: C, (Sy 1
Insensitivity to R(s)—
i ()" ()
Case 3: Output H(S)=1:>CR(S)e R(S)

follows input



Drawing a block diagram for a real system

OI—> O el_eo _!ldf
e, | c—le, T R " C
| ° E(s)-E.(s) L 1(s)
© °©  L@)=1(s)==— Le,)==—
/ R .
E(s) I(s) \
I/RL— i(s) s E(s)

E,(s)



Ei(s)

1/R

I(s)

1/R

I(s)

Eo(s)

E.(s)
E.(s)
y /G — @—



Rules for simplifying block diagrams

Blocks can be connected in series only if the output of a block
is not affected by connecting a following block (no-loading)

The product of transfer functions in the feedforward direction
must be the same

The product of transfer functions around the loop must be the
same



System response

R(s),R(?), C(s),C(2),

etc. etc.

a: constant
I(¢): step function
The stimulus r(t) can be: r(z‘) = 6(t) . impulse function

sin wt, coswt :  sinusoid

Combinations of above

The Laplace transform gives us a general method for calculating the
response of a linear time independent single input — single output system to
a stimulus function. (SISO system)



MIMO systems and the space-state approach

MIMO = multiple input, multiple
output systems

— Car engine

— Aircraft autopilot

Can be linear or non-linear

For a dynamic system the state is
defined by the smallest set of
variables that if know at t =t
define the state at t>t,

State variables are the set of
variables defining the state.

State vector is the vector with
components that are th state
variables.

A hyperspace with dimensions
corresponding the number of state
variables. Any state can be
reperesented by a point in this
state space.



State variable form of differential equations

Newton’s laws and free body systems generally can be described by
differential equations with d?x/dt? terms

* Differential equations can be expressed as sets of first order differential

equations. X _ f(X,u)

 Here the column vector x is the state of the system and u is the inputs the the
output, yis: —
y = h(x,u)

 The vector function f relates the state to its time derivative.
* For alinear system we have:

X=Fx+Gu; y=Hx+Ju

* F is a nxn system matrix, G is nx1 input matrix, H a 1xn row output matrix
and Jis a scalar.



Space state representation forms

u(r) y()
EErE > Systen >
X\7) = F(X,ll,t) General representation
yl? =H(X,u,t
x(t) =F(x,u

Time invariant

= FX(t + Gll(t) Linear time invariant system



Automobile cruise control

X

bx 7} u —bx = mx

#

*Define the position and velocity of the car to be the state variables x, and x,
: b 1

X, =Xy, X,=——X,+—U

m m
X =Fx+Gu

M k>

*If the output is the position of the car y= x;= x
y=Hx+Ju;, J=0

y=[1 o][xl}m-u

X,

After Franklin, Powel, Emanai-Naeini



Automobile cruise control

*If the output is the velocity of the car v=x,

y=Hx+Ju, J=0
X

y=[0 ﬂ[q+0u
o

*Taking a mass of 1000 kg and a constant drag of 500 N

0o 1
b} ’
O -——1 10
m

Matlab commands for 500
N input step

F=[0,1,0,-0.05]
G=[0;0.001]
H=[0,1]

J=0.
step(F,500*G,H,J)

Amplitude

1 1 1
; G = =
-4x05] [1hn] ono1

10

} H=[0 1 /=0

Step Response

P———

1 1 1 1
40 g0 80 100 120
Time {sec) 4

After Franklin, Powel, Emahéi-Naeini



Obtaining the transfer function from state variables

In Matlab a linear system may be defined in state space (ss) form in terms of F,G,H,J

X=Fx+Gu;, y=Hx+Ju

Or polynomial ratio (tf)

HCs) - b,s" +bs" " +---+b _s°+b _s+b

m-1

m 2
a,s"” +as"  +---+a, s +a, S+a,

Or factored zero-pole form (zp)

m

H(S_Zi)

H(s) = K-

H(S_pi)

i=1




Conversion in Matlab

State space to polynomial ratio

>> [num,den]=ss2tf(F,G,H,J)
num =

0 0.0010 0
o = = H (S)
1.0000 0.0500 0

- 0.001
~ §2+0.055+0

Polynomial ratio to factored z-p

[z,p,k] = tf2zp(num,den)
7=




TRANSIENT RESPONSE ANALYSIS



Transients

Response to a step transient

. . . . A
* Transients in systems originate from

many kinds of real signals.

— Driving a car over a step e.g. r(t)
kerbstone

— Abrupt change of oven
temperature setting

— “Typical” electric test signals

* Transient response is in two parts

— The transient per sec
* Transition from initial to final state
* Delay

— The steady state response
e Stable or unstable?
* Oscillations?
e Steady-state error

Time, t



Ist order system (CR circuit, thermal system etc)

For a first order system

E(s)

R(s)

1/Ts

C(s)

B(s)

A

The Laplace transform of a step function I(t) is:

Then using algebra

1
Finally take the inverse transform to get the response c(t)=L

function wrt time.

I, t=0
fi(2)] =
~0-(553ll)- i)
I
)|~ ¢




Step-response of first order system

First order system

_—

10



Step response in Matlab

Take our first order output response C(s)

Cls) =(1

s+ (I/T)

The coefficients in the numeratoris 1 and 1
and 1/T in the denominator. Take T=5

Plot the step response

|

>>num =[1]
num =

1
>> den=[1, 0.2]
den =

1.0000 0.2000

step(num,den)

Step Response

Amplituce
(3]

1
15
Time (sec) y



Unit-impulse response

For a first order system
G(s) = C(s) _ 1
E(s) R(s) Ts-1
RE) s e 1
3
. C(s) = (TS : I)R(s)
B(s)
The Laplace transform of a unit impulse £[5(t)] =1

function o(t) is:

Then using algebra

Finally take inverse transform to get the response C(t) -
function wrt time.




Unit impulse response in Matlab

>> clear
>> num=[1]
num =
1
>> den=[1,1]
den =
1 1
>> impulse(num,den);
>>

Impulse Response
T

Time (sec)



Unit-ramp response

The response to a
steadily rising signal
is an important class
of transient

Then for our first
order system

Then taking inverse
transforms




Unit ramp response in Matlab

Matlab does not have a unit ramp response

However, we can play a trick and transform the function so a step or impulse

plotting function can be used.

Cls) = (Tsl— 1)R(S) - (Tsl— 1)(%2

> -(5))

Amnplitude

>> num=[0 0 1]
num =
0 0 1
>> den=[2 1 0]
den =
2 1 0
>> step(num,den,10)

Step Response

I !
4 ] g 10

Time {sec)



Second order systems: servo system

Rutcrencc lllp ].ll}.)ul. pPuLliuVILIV LY

€, —-— utput potentiometer —_ ’_

I_ N I ‘ \ Feedback signal » '

| C)?D -7, cETT s IS4
| ! ' \ \ - - - . . |
;/_1 : : - : ) |

I devid ¥ )lll _L + .

Iror measuring devie Anplifier

{d

C(s)

3 K K- ) Ay Ris K
S(Ls+ R s+ D0+ K-Kz5 " % sids + B

/ ‘

{b} {C)

After: K. Ogata Modern control engineering 3rd. Ed (Prentice
Hall, London, 1997)



Servomotor controlled positioners

DC brushless servo motors
with rotary optical encoder
position sensing

Precision

T~ s e / leadscrew

]




DC servo-motor positioners

Lead screw Slider DC 1?ervo
////’ Gearbox motor
l
/ /

/

[

gL

/
|

Optical
encoder v

R(s) set

point




From: K. Ogata Modern control engineering 3rd. Ed (Prentice Hall, London, 1997)
Rci’crencc lrlpul I.IIPUL PriLliuvILIvIG

4———17 Qutput potz_ntlometel | _ [

£

Y
put dewu i l’ _L

L — ase— - = = = . —_ —— s e — e — e e —— e — &

Error measuring device ~\mp]1t1<.r Motor Gear [.oud
train

T=K,i

Speed of motor amature governed by armature voltage

Armature inductance €4 T Klev = Lla + Rala +é,

and resistance M
Ke =Li, +Ri +K,0
Torque equilibrium condition JOQ + bHO =I= Kzla

Viscous freton //‘ L@)]-0G)  £.()=L[,0)]

@(S) _ KK,
E(s) s(Zs+R NJ,s+b, )+ K,K,s




From: K. Ogata Modern control engineering 3rd. Ed (Prentice Hall, London, 1997)

Rci’crencc lrlpul l.llPUL PriLliuvILIvIG

4——-17 Qutput potentiometer
& | Y Fecdback signal

— = = == mavn= —_—

Nl
| gﬂ(r
—

put device

— r— - e

_ ‘Error nwa_isurin_g dcx‘jlce
O(s) KK,

EG) sCs+R ys+h)rKKs ~ C6)=n00)

E,(s)= K,[R(s)- €)= K, EGs)

train

| J

C(S) @(S) E(S) K K
Gls)= : Nk N 1722 ‘K
=G) 0G) EG) EG) " s+ R ys + b )+ KKys
L —0
nkK K,K
Gls)= 077}
= (S) S[RQ(J0S+bO)+K2K3J

= G(s)= nK KK, /R, Back emf increases
Jos? +s| b, + KKy effective viscous
R, friction



Jys® + s(bo pESTS )
Ra
Gls)= Jszli = I=1,/n*;B = (bo NLEUS )/nz; K =K,KK,/(nR,)

Refered to output shaft

Or simplified further to:

G(S)= S(TmS + 1) . @ .s‘{J.sA:f- B (E&_
Ky="0 T=i =t T
B B Rb,+K,K,

i)

From: K. Ogata Modern control engineering 3rd. Ed
(Prentice Hall, London, 1997)



(For today at least....)

THE END



DE solution by Laplace using Matlab-1

E(t)
. ] 8%
Use Kirchoff’s and M 3
Ohm'’s
Law to set up
differential equations Ry R;
syms R1 R2 R3 L C real
dil, R, dO (R -R dIl = sym('diff(Il(t),t)"'); dO = sym('diff(Q(t),t)");
714 =( — 2)11; 1,(0) =1, I1 = sym('I1(t)'); Q = sym('Q(t)");
1 ! syms t s
E = sin(t); % Voltage
dg = 1 E(;)_Q(t) + R, I; Q(0)=Q0 eql = dI1l + R2*dQ/L - (R2 - R1)*Il/L;
dt \R,+R, C R, +R, eq2 = d0 - (E - Q/C)/(R2 + R3) - R2*I1/(R2 + R3);
Ll = laplace(eql,t,s)
L2 = laplace(eq2,t,s)
Take Laplace transforms:
il =
s*laplace(Il(t), t, s) - I1(0)
Giving: + ((Rl - R2)*laplace(Il(t), t, s))/L

- (R2*(Q(0) - s*laplace(Q(t), t, s)))/L

L2 =

s*laplace(Q(t), t, s) - Q(0)

- (R2*laplace(Il(t), t, s))/(R2 + R3) - (C/(s"2
+ 1)

- laplace(Q(t), t, s))/(C*(R2 + R3))



